Additive domain decomposition operator splittings – convergence analyses in a dissipative framework
نویسنده
چکیده
We analyze temporal approximation schemes based on overlapping domain decompositions. As such schemes enable computations on parallel and distributed hardware, they are commonly used when integrating large-scale parabolic systems. Our analysis is conducted by first casting the domain decomposition procedure into a variational framework based on weighted Sobolev spaces. The time integration of a parabolic system can then be interpreted as an operator splitting scheme applied to an abstract evolution equation governed by a maximal dissipative vector field. By utilizing this abstract setting, we derive an optimal temporal error analysis for the two most common choices of domain decomposition based integrators. Namely, alternating direction implicit schemes and additive splitting schemes of first and second order. For the standard first-order additive splitting scheme we also extend the error analysis to semilinear evolution equations, which may only have mild solutions.
منابع مشابه
Space-Time Continuous Analysis of Waveform Relaxation for the Heat Equation
Waveform relaxation algorithms for partial diierential equations (PDEs) are traditionally obtained by discretizing the PDE in space and then splitting the discrete operator using matrix splittings. For the semidiscrete heat equation one can show linear convergence on unbounded time intervals and superlinear convergence on bounded time intervals by this approach. However the bounds depend in gen...
متن کاملDimension splitting for quasilinear parabolic equations
In the current paper, we derive a rigorous convergence analysis for a broad range of splitting schemes applied to abstract nonlinear evolution equations, including the Lie and Peaceman–Rachford splittings. The analysis is in particular applicable to (possibly degenerate) quasilinear parabolic problems and their dimension splittings. The abstract framework is based on the theory of maximal dissi...
متن کاملDomain Decomposition Operator Splittings for the Solution of Parabolic Equations
We study domain decomposition counterparts of the classical alternating direction implicit (ADI) and fractional step (FS) methods for solving the large linear systems arising from the implicit time stepping of parabolic equations. In the classical ADI and FS methods for parabolic equations, the elliptic operator is split along coordinate axes; they yield tridiagonal linear systems whenever a un...
متن کاملDomain decomposition methods with overlapping subdomains for time-dependent problems
Domain decomposition (DD) methods for solving time-dependent problems can be classified by (i) the method of domain decomposition used, (ii) the choice of decomposition operators (exchange of boundary conditions), and (iii) the splitting scheme employed. To construct homogeneous numerical algorithms, overlapping subdomain methods are preferable. Domain decomposition is associated with the corre...
متن کاملUpdating finite element model using frequency domain decomposition method and bees algorithm
The following study deals with the updating the finite element model of structures using the operational modal analysis. The updating process uses an evolutionary optimization algorithm, namely bees algorithm which applies instinctive behavior of honeybees for finding food sources. To determine the uncertain updated parameters such as geometry and material properties of the structure, local and...
متن کامل